Appropriate Chemotherapy Dosing for Obese Adult Patients With Cancer: American Society of Clinical Oncology Clinical Practice Guideline

ABSTRACT

Purpose
To provide recommendations for appropriate cytotoxic chemotherapy dosing for obese adult patients with cancer.

Methods
The American Society of Clinical Oncology convened a Panel of experts in medical and gynecologic oncology, clinical pharmacology, pharmacokinetics and pharmacogenetics, and biostatistics and a patient representative. MEDLINE searches identified studies published in English between 1996 and 2010, and a systematic review of the literature was conducted. A majority of studies involved breast, ovarian, colon, and lung cancers. This guideline does not address dosing for novel targeted agents.

Results
Practice pattern studies demonstrate that up to 40% of obese patients receive limited chemotherapy doses that are not based on actual body weight. Concerns about toxicity or overdosing in obese patients with cancer, based on the use of actual body weight, are unfounded.

Recommendations
The Panel recommends that full weight–based cytotoxic chemotherapy doses be used to treat obese patients with cancer, particularly when the goal of treatment is cure. There is no evidence that short- or long-term toxicity is increased among obese patients receiving full weight–based doses. Most data indicate that myelosuppression is the same or less pronounced among the obese than the non-obese who are administered full weight–based doses. Clinicians should respond to all treatment-related toxicities in obese patients in the same ways they do for non-obese patients. The use of fixed-dose chemotherapy is rarely justified, but the Panel does recommend fixed dosing for a few select agents. The Panel recommends further research into the role of pharmacokinetics and pharmacogenetics to guide appropriate dosing of obese patients with cancer.

J Clin Oncol 30:1553-1561. © 2012 by American Society of Clinical Oncology

INTRODUCTION

Optimal doses of chemotherapy drugs or drug combinations are generally established through randomized controlled clinical trials (RCTs). In adult patients with cancer, drug dosing has traditionally been based on a patient’s estimated body surface area (BSA).¹ There exists compelling evidence that reductions from standard dose and dose-intensity may compromise disease-free survival (DFS) and overall survival (OS) in the curative setting.² ⁷ Furthermore, a number of authors have suggested that the optimal delivery of cancer chemotherapy should be considered an indicator of quality of care.³ ⁸ ⁹ Despite studies confirming the safety and importance of full weight–based cytotoxic (intravenous [IV] and oral) chemotherapy dosing, many overweight and obese patients continue to receive limited chemotherapy doses.¹⁰ ¹³ Practice pattern studies demonstrate that up to 40% of obese patients receive limited doses that are not based on actual body weight.¹⁰ ¹⁴ ¹⁵ Many oncologists continue to use either ideal body weight or adjusted ideal body weight or to cap the BSA at, for example, 2.0 m² rather than use actual body weight to calculate BSA. Moreover, considerable variation in the dosing of
chemotherapy in overweight and obese individuals with cancer has been documented,\(^3,13,14,16,18-22\) suggesting considerable uncertainty among physicians about optimal dose selection.

The practice of limiting doses in overweight and obese patients may negatively influence the quality of care and outcomes at a population level, given the rise in rates of obesity both in the United States\(^23,24\) and globally.\(^25\) Rates of obesity have increased in recent years, reaching epidemic proportions in the United States.

THE BOTTOM LINE

ASCO GUIDELINE

ASCO Guideline on Appropriate Chemotherapy Dosing for Obese Adult Patients With Cancer

Intervention
- Recommendations for appropriate chemotherapy dosing for obese adult patients with cancer

Target Audience
- Medical oncologists, pharmacists, oncology nurses

Key Recommendations
- Panel recommends that full weight–based chemotherapy doses be used in the treatment of the obese patient with cancer, particularly when the goal of treatment is cure.
- Clinicians should respond to all treatment-related toxicities in obese patients with cancer in the same ways they do for non-obese patients.
- If a dose reduction is employed in response to toxicity, consideration should be given to the resumption of full weight–based doses for subsequent cycles, especially if a possible cause of toxicity (eg, impaired renal, hepatic function) has been resolved; there is no evidence to support the need for greater dose reductions for obese patients compared with non-obese patients.
- The use of fixed-dose cytotoxic chemotherapy is rarely justified (except for a few select agents).

Methods
- Systematic review of the medical literature and analysis of the medical literature by the Update Committee of an Expert Panel

Additional Information
- Recommendations and a brief summary of the literature and analysis are provided in this Executive Summary

The full guideline with methodology, comprehensive discussions of the literature, full reference list, Data Supplements, evidence tables, and clinical tool and resources can be found at www.asco.org/guidelines/wbd. Patient information is available at www.cancer.net.

The Centers for Disease Control and Prevention estimates that a majority (> 60%) of adult Americans have a body mass index (BMI) > 25 (overweight, obese, morbidly obese) and that this proportion is steadily increasing.\(^23,24\) Poorer outcomes among obese patients are most likely multifactorial.\(^26\) Systemic chemotherapy at less than full weight–based dosing and unnecessary dose reductions may explain, in part, the significantly higher cancer mortality rates observed in overweight and obese individuals. Concerns about overdosing in the obese cancer patient based on the use of actual body weight are unfounded.\(^10,13,19,27-29\) A compelling body of evidence exists supporting the important relationship between selection of appropriate chemotherapy doses in adult patients with cancer and treatment efficacy and toxicity as well as pharmacokinetic correlates of dose selection.\(^2,5,6,10,13,18,27-90\)
Guideline Policy
This Executive Summary for clinicians is an abridged summary of an ASCO clinical practice guideline. The guideline and this summary are not intended to substitute for the independent professional judgment of the treating physician. Practice guidelines do not account for individual variation among patients and may not reflect the most recent evidence. This summary does not recommend any particular product or course of medical treatment. Use of the practice guideline and this summary is voluntary. The full practice guideline and additional information are available at http://www.asco.org/guidelines/wbd.

Guideline and Conflicts of Interest
The Expert Panel was assembled in accordance with the ASCO Conflict of Interest Management Procedures for Clinical Practice Guidelines (summarized at http://www.asco.org/guidelinescoi). Members of the Panel completed the ASCO disclosure form, which requires disclosure of financial and other interests that are relevant to the subject matter of the guideline, including relationships with commercial entities that are reasonably likely to experience direct regulatory or commercial impact as a result of promulgation of the guideline. Categories for disclosure include employment relationships, consulting arrangements, stock ownership, honoraria, research funding, and expert testimony. In accordance with the Procedures, the majority of the members of the Panel did not disclose any of these relationships.

RESULTS
The overarching question for this clinical practice guideline is: Should actual body weight be used to select chemotherapy doses in obese individuals with cancer? For adults, overweight and obesity ranges are determined by using weight and height to calculate BMI. For more information about interpreting BMI, visit the Centers for Disease Control and Prevention Web site.29 An adult who has a BMI between 25 and 29.9 kg/m² is considered overweight; an adult who has a BMI of ≥ 30 kg/m² is considered obese; an adult who has a BMI > 40 kg/m² (or > 35 kg/m² with comorbid conditions) is considered morbidly obese. More information about interpreting BMI for adults is provided in Data Supplement 6 at www.asco.org/guidelines/wbd. Table 1 provides a summary of the following guideline recommendations.

GUIDELINE RECOMMENDATIONS

Clinical Question 1
Is there evidence that full weight–based dosing increases toxicity in obese patients with cancer?

Recommendation 1.1. The Panel recommends that actual body weight be used when selecting cytotoxic chemotherapy doses regardless of obesity status. There is no evidence that short- or long-term toxicity is increased among obese patients receiving full–based chemotherapy doses. Most data indicate that myelosuppression is the same or less pronounced among the obese than the non-obese when administered full weight–based doses.

Literature review and analysis. Observational studies and retrospective analyses of participants in clinical trials have not demonstrated increased hematologic or nonhematologic toxicity in obese patients receiving chemotherapy doses calculated using actual body weight. For example, no excess toxicity was observed among patients with small-cell lung cancer when actual weight was used to calculate chemotherapy doses.28 In a retrospective analysis of CALGB (Cancer and Leukemia Group B) Protocol 8541, obese patients receiving full weight–based dosing of adjuvant cyclophosphamide, doxorubicin, and fluorouracil had no excess grade 3 hematologic or nonhematologic toxicity at any of the three dose levels in the study compared with non-obese patients.27 In obese patients receiving full weight–based doses of cyclophosphamide, methotrexate, and fluorouracil in the adjuvant treatment of breast cancer, patients with the highest BMIs had the highest leukocyte nadir values, or leukocyte nadirs were less pronounced among obese patients compared with non-obese patients.22 A large study of 9,672 patients with breast cancer treated in practices across the United States with adjuvant doxorubicin and cyclophosphamide demonstrated that the likelihood of febrile neutropenia, if anything, decreased as BMI increased among those patients who received full weight–based dosing.13 Similar findings were reported in the treatment of 59 women with endometrial or ovarian cancer and BSA > 2.0 m² who received paclitaxel and carboplatin based on actual body weight.92 On the basis of these studies and others included in the systematic review,93-96 the Panel concluded that there is no evidence indicating higher rates of hematologic or nonhematologic toxicity among obese patients who received full weight–based doses. The heavier a patient is, even fully dosed, the less likely he or she is to experience febrile neutropenia, especially in the absence of additional comorbid illness.

Recommendation 1.2. The Panel recommends full weight–based chemotherapy dosing for morbidly obese patients with cancer, subject to appropriate consideration of other comorbid conditions. Data are extremely limited regarding optimal dose selection among the morbidly obese and other special subgroups. More studies are needed to evaluate optimal agents and agent combinations for obese and morbidly obese patients with cancer; however, on the basis of available information, it seems likely that the same principles regarding dose selection for obese patients apply to the morbidly obese.

Literature review and analysis. Nine articles were found in a separate search for morbidly obese patients with cancer97-105; these were small observational studies or case reports and primarily presented data on the pharmacokinetics of chemotherapy in this subgroup. For this reason, there are no separate recommendations for morbidly obese patients in this guideline. From the available evidence, it seems that morbidly obese patients being treated with curative intent and receiving full weight–based doses were no more likely to experience toxicity than lean patients.106 Clinicians need to calculate full weight–based dosing and use clinical judgment when monitoring toxicity, as they would for all patients.107 The Panel recognizes that there may be cases in which obese patients have other serious medical problems, and it encourages clinicians to use judgment when dosing, as they would if the patients were not obese (eg, heart, renal, pulmonary problems).

Clinical Question 2
Is there evidence that less than full weight–based dosing compromises efficacy in obese patients with cancer?

Recommendation 2.1. The Panel recommends that full weight–based chemotherapy doses (IV and oral) be used in the treatment of the obese patient with cancer, particularly when the goal of treatment is cure. Selecting reduced doses in this setting may result in poorer DFS and OS rates. There are compelling data in patients with breast cancer that reduced dose-intensity chemotherapy is associated with increased disease recurrence and mortality. Although data in other malignancies are more limited, based on improved survival observed with chemotherapy compared with controls, a dose-response relationship exists for many responsive malignancies. Therefore, data are not available to recommend a cut point for reducing chemotherapy doses in the obese patient.
available to address this question for all cancer types, in the absence of data demonstrating sustained efficacy for reduced-dose chemotherapy, the Panel believes that the prudent approach is to provide full weight–based chemotherapy dosing to obese patients with cancer, especially those receiving treatment with curative intent. Most of the data in support of full weight–based chemotherapy treatment in patients with cancer who are obese are from the treatment of early-stage disease. Data supporting the use of full weight–based doses for subsequent cycles, especially if a possible cause of toxicity (eg, impaired renal, hepatic function) has been resolved. The Panel recommends consideration of reduced fixed doses only when select cytotoxic agents (eg, carboplatin and bleomycin). On the basis of previous information, vincristine is capped at a maximum dose of 2.0 mg when used as part of the CHOP and CVP regimens. Several other cytotoxic chemotherapeutic agents have been used in clinical trials at a fixed dose independent of patient weight or BSA. Therefore, although data are not available to address this question for all cancer types, the Panel recommends consideration of reduced fixed doses in the advanced disease setting limited.

Clinical Question 3

If an obese patient experiences high-grade toxicity, should chemotherapy doses or schedules be modified differently from modifications used for non-obese patients with cancer?

Recommendation 3.1. Clinicians should follow the same guidelines for dose reduction, regardless of obesity status, for all patients, depending on the type and severity of toxicity, any comorbid conditions, and whether the treatment intention is cure or palliation. There is no evidence to support one formula for calculating BSA over another.

Abbreviations: BSA, body surface area; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; CVP, cyclophosphamide, vincristine, prednisone; IV, intravenous.
the resumption of full weight–based doses for subsequent cycles, especially if a possible cause of toxicity (eg, impaired renal, hepatic function) has been resolved. The Panel recognizes the need for clinicians to exercise judgment when providing care for patients who have experienced grade 3 or 4 chemotherapy toxicity. The presence of obesity alone should not alter such clinical judgment.

Literature review and analysis. There are no RCTs that specify differential management of moderate to severe toxicity (grades 3 to 4) according to obesity status (Data Supplement 5 at www.asco.org/guidelines/wbd provides more information on toxicity grades). Similarly, no observational studies describe BMI-based management of toxicities from chemotherapy. Given the lack of evidence citing harms in differential treatment, the Panel recommends clinicians respond to treatment-related toxicities in obese patients with cancer in the same ways they do for non-obese patients with cancer. Excess toxicity usually results from the fact that the patient has reduced drug elimination in reference to the dose of one (or more) chemotherapeutic agent. A return to initial dosing after toxicity is resolved rarely occurs unless the reason for toxicity is clearly established and fully resolved. Thus, the dose should only be increased to the initial dose if it is established that drug elimination has improved (eg, improvement in renal function, return of bilirubin to normal, significant improvement in performance status). Obesity status alone should not play a role in dose modifications in response to toxicity.

Clinical Question 4

Is a fixed dose (dose prescribed independently of weight or BSA) of cytotoxic chemotherapy ever justified? Are there unique dosing considerations for certain chemotherapeutic agents?

Recommendation 4.1. The Panel recommends consideration of fixed dosing only with select cytotoxic agents (eg, carboplatin and bleomycin). On the basis primarily of neurotoxicity concerns, vincristine is capped at a maximum dose of 2.0 mg when used as part of the CHOP (cyclophosphamide, hydroxydoxorubicin [doxorubicin], vincristine, prednisone) and CVP (cyclophosphamide, vincristine, prednisone) regimens. Several other cytotoxic chemotherapeutic agents have been used in clinical trials at a fixed dose independent of patient weight or BSA. However, it is not clear that fixed dosing is optimal for any of these other agents.

Literature review and analysis. The Panel recommends consideration of fixed dosing only with a select group of agents. For example, carboplatin clearance depends on glomerular filtration rate (GFR), and doses are calculated best using the Calvert formula\(^ {122,131} \) \(\text{[total dose [mg] = [AUC (target area under the plasma concentration-time curve)] \times [GFR + 25]}} \) to achieve a targeted AUC. The GFR used in the Calvert formula to calculate AUC dosing should not exceed 125 mL/min. The maximum carboplatin dose should not exceed AUC (mg \(\times \text{min/mL} \) \(\times \) 150 mL/min. Because carboplatin clearance is dictated by renal filtration, and GFR correlates with BSA, dosing of carboplatin in the obese patient with cancer based on GFR may be most reasonable. There are several agents that are sometimes prescribed at a fixed dose or capped based on the dose that was used in clinical trials. The usual adult dose of bleomycin for testicular cancer is a fixed dose in a BEP (bleomycin, etoposide, cisplatin) regimen.\(^ \) In R-CHOP (rituximab plus CHOP), CHOP, and CVP regimens, the dose of vincristine is capped at a maximum of 2 mg. Of note, the use of flat-fixed dosing of irinotecan has been previously examined but not in large clinical trials.\(^ \) In general oncologic practice, dosing for irinotecan remains based on BSA.

There are other agents that have been used in fixed doses in non-RCTs of the treatment of specific cancers in unique patient populations; these include agents such as metronomic cyclophosphamide\(^ {118-123} \) and capecitabine.\(^ \) Fixed dosing based on BMI or BSA categories is possible and has been proposed for some agents (eg, cisplatin), but such approaches have never been prospectively evaluated.\(^ \)

Clinical Question 5

How should BSA be calculated? Specifically, what is the best formula for use in the obese patient with cancer?

Recommendation 5.1. The Panel recommends that BSA be calculated using any of the standard formulas (eg, Mosteller, DuBois and Dubois, Haycock, Gehan and George, Boyd formulas). There is no evidence to support one formula for calculating BSA over another.

Literature review and analysis. Formulas for calculating BSA were not developed for use in the obese or morbidly obese and/or those with multiple comorbid conditions and do not take into account patient sex. In fact, there may be noticeable differences (> 10%) in calculated values of BSA, especially at the extremes of weight and/or height, resulting in noticeable differences in dosing. There are ongoing efforts to establish a new BSA equation suitable for a typical 21st century population, because > 60% of adult Americans have BMIs > 25 kg/m\(^2 \) and this proportion is steadily increasing.\(^ \)

Data Supplement 5 at www.asco.org/guidelines/wbd includes BSA formulas currently used.

Clinical Question 6

What is the role of pharmacokinetic and/or pharmacogenetic factors when determining optimal chemotherapy dose and delivery (bolus, infusional, therapeutic drug monitoring) for obese patients with cancer?

Recommendation 6.1. The Panel recommends further research into the role of pharmacokinetic and pharmacogenetic information for guiding the dosing of IV and oral chemotherapeutic agents for adult patients with cancer who are obese. It should be emphasized that there is a paucity of information on the influence of obesity on the pharmacokinetics of most anticancer drugs from properly powered trials. This is the result, in part, of empiric eligibility restrictions from the outset in clinical trials and a lack of pharmacokinetic analyses performed and published for this subpopulation. Overall, there are insufficient pharmacokinetic data to reject the recommendation to use a full weight–based dosing strategy for chemotherapeutic agents in patients with cancer who are obese, regardless of route of administration and/or infusion time.

Literature review and analysis. Clearance is the most important pharmacokinetic parameter to consider when devising a dosing regimen for anticancer agents, because it is inversely related to the AUC. This parameter has clinical relevance because it correlates with clinical outcomes, although there are only a few examples in which the association is reproducible.\(^ \) For the majority of anticancer drugs, the liver is the principal organ mediating clearance. The accumulation of fat in the liver of obese patients may alter hepatic blood flow, and this pathologic change might have an impact on clearance.\(^ \)
other primary organs involved in the clearance of drugs are the kidneys. The processes involved in drug elimination through the kidneys include glomerular filtration, tubular secretion, and tubular reabsorption. The effect of obesity on these functions is not entirely clear.1,2,7

The pharmacokinetics of some but not all drugs may be altered in obese patients, but there is no single valid method to relate drug clearance to degree of obesity, so changes in drug dosing are not currently recommended. Three observations regarding drug clearance and obesity were recently described1,2,8: (1) obese individuals exhibit higher absolute drug clearance than do their non-obese counterparts; (2) clearance does not increase linearly with total body weight; and (3) clearance and lean body weight are correlated.

There is a general paucity of information from sufficiently powered clinical studies on the influence of obesity on the pharmacokinetics of most anticancer drugs. This is the result, in part, of empiric eligibility restrictions from the outset in clinical trials and a lack of pharmacokinetic analyses performed and published for this subpopulation. In many studies, the obese patient may be underrepresented.

Overall, there are insufficient pharmacokinetic data to reject the Panel’s recommendation to use a full weight–based dosing strategy for chemotherapeutic agents in patients with cancer who are obese, regardless of route of administration and/or infusion time. To date, there are no published pharmaceutogenetic articles meeting the inclusion and exclusion criteria for this guideline that could have been included in the discussion. Nevertheless, there may be a future role for applying pharmacokinetic and pharmaceutogenetic principles in cancer chemotherapy dosing to achieve a more personalized approach to treatment for the obese,1,2 although large prospective studies are certainly required to support this practice. For more information on the pharmacokinetic clearance of some chemotherapeutic agents (eg, cisplatin, paclitaxel, troxicitabine, carboplatin, docetaxel, doxorubicin, irinotecan, topotecan, and busulfan) and pharmaceutogenetics, refer to the full guideline at www.asco.org/guidelines/wbd.

Chemotherapy dose selection generally lies within the purview of the treating physician. If obese patients or caregivers inquire about dosing, however, a discussion of the evidence contained within this guideline is appropriate. Physicians may have to explain to obese patients and caregivers that higher doses are needed to be effective. In fact, suboptimal treatment could result if dosing is not full weight based. It is important to reassure patients that toxicity from the appropriate dose of chemotherapy is not expected to be greater. Adverse effects will be monitored closely. Patients should be warned that costs, even insurance copays, may be higher.

Communication with other health care providers is also warranted. Pharmacists and nursing professionals who are accustomed to limiting chemotherapy doses for obese patients should be informed of the existing evidence. IV and oral doses may be prepackaged for patients of normal weight, but appropriate dosing should be delivered regardless of doses contained within a given vial. Arbitrary capping based on drug procurement costs is unacceptable (eg, one v 1.5 vials).

HEALTH DISPARITIES

Some racial and ethnic minorities and patients of lower socioeconomic status (SES) are at risk of suboptimal cancer care. Members of some racial and ethnic minority groups and patients with fewer financial resources tend to have a higher burden of comorbid illness, are more likely to be uninsured or underinsured, and face greater challenges in accessing high-quality health care.1,30-32 Awareness of disparities in quality of chemotherapy dose selection should be considered in context.

Black/African American patients and patients of lower SES are more likely to receive reduced doses of adjuvant chemotherapy in the treatment of breast cancer.1,19,133 The higher rates of obesity among blacks/African Americans, Hispanics/Latinos, and people of lower SES1,134-136 only increase the likelihood of chemotherapy dose limits among these patients, who already experience higher case-fatality rates.1,37 Up to 40% of obese patients with breast cancer receive substantially reduced chemotherapy doses (> 10% to 15% dose reduction), compared with doses that would be administered if actual body weight were used in dose calculations.1,38,45 Given the systematic differences in chemotherapy dose selection, it may be that black/African American women and women of lower SES will reap the greatest benefits from a change in the common practice of dose limitations in obese patients to full weight–based dosing. It is reassuring that there is no evidence that toxicity is more likely to occur when full weight–based doses are used.1,3,27,106,138,139

LIMITATIONS OF THE RESEARCH AND FUTURE DIRECTIONS

The most obvious limitation of the evidence provided in support of this guideline is the limited number of prospective RCTs directly addressing the issue of weight-based dosing. Nonetheless, in addition to RCTs supporting the small but significant incremental benefit of dose-intensified therapy compared with standard dose-intensity, several trials have demonstrated a substantial reduction in treatment efficacy, with reductions in relative dose-intensity below standard doses and schedules. RCTs also have several well-recognized limitations. Relevant RCTs are only available for the most common malignancies (eg, breast, lung, and gynecologic cancers). Studying the impact of relatively small reductions in dose-intensity would require a large sample size to have sufficient power to assess the impact on long-term outcomes such as OS. RCTs often use strict and limiting eligibility criteria, excluding patients with comorbidities commonly encountered in those with cancer, which may reduce effectiveness or increase toxicity but which often disqualify the patients from the trial. Therefore, RCTs may not adequately address effectiveness in the broader, unscreened cancer population with major medical comorbidities and treatment safety issues that may not emerge until years later.

Given the data that do exist, many consider deliberate random assignment of patients with responsive and potentially curable malignancies to lower and potentially less effective dose-intensity to be unethical. However, a rigorous systematic review of data from a series of patients enrolled onto Cooperative Group trials—examining data on all patients (with and without comorbid conditions) who are
defined as obese—could shed light on the issue of outcomes for obese patients with cancer.

Therefore, for both economic and ethical reasons, it is unlikely that additional data from RCTs directly addressing this issue will become available. Fortunately, there are abundant and compelling supportive data from both prospective cohort studies and well-done retrospective analyses of RCTs, which have almost universally supported the clinical importance of maintaining relative dose-intensity in patients with cancer with responsive and potentially curable malignancies. Consistent pharmacokinetic and pharmacodynamic studies all provide a firm underlying basis for the recommendations provided in this guideline. It is essential that the study hypothesis, study population, controls, measurements, analytic methods, and any subgroup analyses be defined a priori. Well-designed prospective studies with planned analysis of body composition and adverse events would be valuable. There is a real need for data on both toxicity and efficacy in special populations such as the obese. As new drugs are being developed, it is important for industry to at least provide pharmacokinetic and pharmacodynamic data in real-world subgroups that may have been excluded from clinical trials. It is clear that clinician dosing decisions for obese patients and missing and/or inaccurately recorded clinical data affect prognosis and response to treatment.

ADDITIONAL RESOURCES

Data Supplements, including evidence tables, and clinical tools and resources can be found at www.asco.org/guidelines/wbd. Patient information is available at www.cancer.net.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The author(s) indicated no potential conflicts of interest.

AUTHOR CONTRIBUTIONS

Administrative support: Pamela B. Mangu

Manuscript writing: All authors

Final approval of manuscript: All authors

REFERENCES

25. Organisation for Economic Co-operation and Development: Obesity and the economics of prevention: Fit not fat. http://www.oecd.org/document/31/0,3343,en_26949_33929_46990775_1_1_1_1,00.html

© 2012 by American Society of Clinical Oncology
71. Cornelson TL, Reed E: Dose intensity analysis of high-dose carboplatin in refractory ovarian carcinoma relative to age. Cancer 71:650-655, 1993